IDS-509G Managed Industrial Ethernet Switch with Gigabit Fiber

(Q) perle.com/products/switches/ids-509g-industrial-managed-gigabit-switch.shtm

9 port Compact DIN Rail Switch

- 10/100/1000Base-T (RJ45) ports for Gigabit and Fast Ethernet devices
- 1000Base-X SC/ST fiber ports
- PRO feature set including advanced switching, encryption and IEEE 1588 PTP
- IP Manageability, VLAN and resiliency management
- Digital inputs for generation of alerts
- Compact, corrosion resistant case attaches to a standard DIN Rail
- Redundant dual power input 12/24/48 VDC, 24 VAC
- Out-of-band management via RJ45 or USB serial ports
- Programmable Controller safety and Hazardous Location Certification
- -40 to 75C industrial operating temperature (XT Models)

The IDS-509G is a 9 port Managed Ethernet Switch that can operate in industrial environments providing advanced performance and enabling real-time deterministic network operation. Choose any combination of 10/100/1000-Base-T Ethernet copper ports and 1000BaseX fiber ports to meet the needs of your environment.

- 8 copper, 1 fixed SC/ST fiber port
- 7 copper, 2 fixed SC/ST fiber ports
- 6 copper, 3 fixed SC/ST fiber ports

In environments where high levels of electromagnetic interference (EMI) is a common phenomenon, like industrial plants, utilizing fiber is critical. EMI can cause data corruption over copper-based Ethernet links. Data transmitted over fiber optic cable is completely immune to this type of noise ensuring optimal data transmission across the plant floor.

With over 82 models, the Perle IDS-509G offers a choice of connectors, fiber types, temperature support and operating distances.

Perle Industrial-grade Ethernet Switches are designed to stand up to extreme temperatures, surges, vibrations, and shocks found in industrial automation, government, military, oil and gas, mining and outdoor applications.

The simple Plug and Play installation available in Perle's Fast Setup feature gets your Ethernet devices networked immediately. CCNA (Cisco Certified Network Associate) and CCNP (Cisco Certified Network Professional) trained engineers will appreciate the familiar Command Line Interface (CLI) via in-band Telnet or the out-band serial console port.

The PRO feature set in the IDS-305F is ideal for enterprise-grade level environments where additional extensive security and network
integration functionality is required.

- AAA (Authentication, Authorization, Accounting)security protocols: RADIUS and TACACS+
- Secure management sessions via SSH, SNMPv3, Telnet and HTTPS
- Management Access Lists (ACL) by IP address and IP Port number
- Password Strength Checking
- IEEE 802.1x Authentication and Port Security for protection of user access ports
- Optimize the performance and intelligence of the network with Advanced Protocols: LLDP, GVRP, Voice VLANs, MSTP, GMRP, IPv4 IGMP Snooping and IPV6 MLD Snooping

The IDS-509G supports a comprehensive set of management functions, such as P-Ring, management VLAN, QoS, RMON, N:1 port mirroring and local alert log. In addition, the switch can be managed with an IPv6 address.

Hardened to provide superior reliability in -10 to $60^{\circ} \mathrm{C}$, these are rugged fan-less switches. In addition, every component on every industrial (XT) model has been designed and tested to handle operating temperatures between -40 and 75C.

All Perle Industrial Ethernet Switches only use high-end components from the leading chip manufacturers to ensure the highest level of durability and reliability. In addition, all units have a corrosion resistance aluminum case and dual redundant power input with reverse polarity and overload protection.

Perle has been designing industrial hardware for over 35 years and have used this expertise to design the toughest Ethernet switches on the market that will keep your system running for years to come.

IDS-509G Industrial Managed DIN Rail Switch Features

Simple Zero-touch discovery using Dynamic Host Control Protocol (DHCP), Perle's "Fast Setup" for first time installation, deployment provides simple deployment in Ethernet environments

Security 802.1X, port security, Secure Shell (SSHV2); SNMPV3 provides encrypted administrator traffic during CLI and SNMP sessions; TACACS+ and RADIUS authentication facilitate centralized control and restrict unauthorized users.

Resiliency

- STP, RSTP and MSTP protocols for fast recovery.
- Perle's P-Ring protocol for fast convergence in ring topologies
- Link Standby is a link recovery feature for two links that provides a simple alternative to spanning tree protocols for link redundancy
- Buffered Real Time Clock backup

Manageability

- Web Device Manager, Telnet/SSH, HTTPS access, SNMP and Perle's PerleView NMS for centralized management
- In-band management via RJ45 or USB serial port
- Use an IPv4 or IPv6 address
- Removable MicroSD flash for configuration files and firmware backup and restoration

Rugged design for
harsh

- Corrosion resistant case
environments
- Programmable Controller Safety certified
- Certified for hazardous locations
- Extended industrial temperature models

Reliable operation

- Fan-less, no moving parts
- Dual power input. Connect to separate power sources for redundancy.
- Reverse polarity protection
- Handles vibration and shock conditions found in industrial
- Overload current protection environments

Real-time Ethernet performance

- Fast wire-speed, store and forward switching
- Auto-sensing for speed and duplex
- Auto-mdi/mdix-crossover works with straight and crossover cables

Performance Features

Port Auto-

sensing
Auto-sensing of port speed and auto-negotiation of duplex on all switch ports for optimizing bandwidth

Auto
 MDI/MDIX

Medium-dependent interface crossover (Auto-MDIX) capability on $10 / 100$ and $10 / 100 / 1000 \mathrm{mbps}$ interfaces that enables the interface to automatically detect the required cable type (straight thru or crossover) and to configure the connection appropriately

802.3x flow

control
IEEE 802.3x flow control on all ports. (The switch does not initiate pause frames)

Link
Aggregation Increase port bandwidth through link aggregation. Support is provided for IEEE 802.3ad using Link Aggregation Control protocol Protocol (LACP). Up to eight (8) ports in a single port-channel

Static Link

Aggregation Provides the ability to operate under a static (manual) link aggregation scenario (where the remote switch peer does not support LACP)

Storm Control

Storm control prevents traffic on a LAN from being disrupted by a broadcast, multicast, or unicast storm on one of the physical interfaces. A LAN storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. Storm Control enables limits to be placed on broadcast, multicast and unicast traffic

Bandwidth

Control
Monitoring
Bandwidth Control provides the ability to monitor the flow rates on a per port basis and the ability to cause an SNMP trap
to occur (selectable) and put the port in an "error-disabled" state

Static MAC

Addressing
This feature enables the manual configuration of the MAC addresses on a per port basis. Flooding is prevented by retaining MAC entries across a reboot of the switch.

Port Blocking

Port Blocking provides the ability to block the flooding of unknown layer 2 unicast and multicast traffic on an Interface

Internet Group Management Protocol (IGMP) constrains the flooding of multicast traffic by dynamically configuring Layer 2 interfaces so that multicast traffic is forwarded to only those interfaces associated with IP multicast devices.

IGMPv1, 그, ㄱ, IGMP snooping querier mode, IGMP report suppression, topology change notification and robustness variable features are supported

IPV6 MLD
Snooping
With Multicast Listener Discovery (MLD) snooping, IPv6 multicast data is selectively forwarded to a list of ports that want to receive the data, instead of being flooded to all ports in a VLAN. This list is constructed by snooping IPv6 multicast control packets

GMRP

GARP Multicast Registration Protocol (GMRP) provides a constrained multicast flooding facility similar to IGMP snooping.

GMRP provides a mechanism that allows bridges and end stations to dynamically register group membership information with the MAC bridges attached to the same LAN segment and for that information to be disseminated across all bridges in the Bridged LAN that supports extended filtering services

Port Quick

Disconnect In some network environments, it is desirable to move an Ethernet from one switch port to another and have the device come on-line quickly. The Port Quick Disconnect feature if enabled, provides an immediate age-out of the MAC addresses learned on the port when the port status changes from a link-up to a link-down state

Manageability Features

Web Device
 Manager

The Perle Web Device Manager is an embedded Web based application that provides an easy to use browser interface for managing the switch. Operates with both http and secure https streams. Unlike competitive products, Java applet technology is not required or used

Command Line Interface (CLI)

A familiar text-based Command Line Interface that is based on accepted industry standard syntax and structure. Ideal for CCNA and CCNP trained engineers, this interface is available via in-band Telnet/SSH or the out-band serial console port

SNMP

Manage the switch with an snmp compatible management station that is running platforms such as HP Openview or
Perle's PerleVIEW NMS. SNMP V1 and V2C

PerleVIEW PerleVIEW is Perle's SNMP-based network management system that provides a view of the network with a large scale of Perle networking devices.

IPv6

Manage with an IPv4 or IPV6 address

DHCP Client
Auto-
Configuration
Automates configuration of switch information such as IP address, default gateway, hostname and Domain Name System
(DNS) as well as TFTP server names. Firmware and configuration file locations are provided through options 54, 66, 67,
125 and 150

DHCP Relay

DHCP Relay is used for forwarding requests from DHCP clients when they are not on the same physical subnet. As a DHCP relay agent the switch operates as a Layer 3 device that forwards DHCP packets between clients and servers.

Normally used in metro or large enterprise deployments DHCP Option 82 insertion is used to provide additional information on "physical attachment" of the client. As per RFC 3046, option 82 enables additional pre-defined information to be inserted into the DHCP request packet (for DHCP Servers that support this option)

DHCP Server

For networks where a central DHCP server is not provided, the switch can provide a DHCP Server function for allocation of IP addresses to the connected devices
DHCP server

port-based
address
allocation
:---
existing network

When configured, the DHCP server port-based address allocation feature ensures that the same IP address is always
offered to the same connected port even as the client identifier or client hardware address changes in the DHCP messages
received on that port

LLDP

LLDP-Link Layer Discovery Protocol as per IEEE 802.1AB is a neighbor discovery protocol that is used for network devices to advertise information about themselves to other devices on the network. This protocol runs over the data-link layer, which allows two systems running different network layer protocols to learn about each other (via TLVs - Type-Length-Value)

LLDP-MED
LLDP Media Endpoint Discovery is an extension to LLDP that operates between endpoint devices such as IP phones and network devices such as switches. It specifically provides support for voice over IP (VoIP) applications and provides additional TLVs for capabilities discovery, network policy, Power over Ethernet, inventory management and location information

NTP

The switch can provide the time to NTP/SNTP capable client devices (or other switches, etc). You can run the SNTP client and the NTP server concurrently on your system. Therefore you can obtain time from an outside source and serve that time to the devices connected to the switch.

IEEE 1588 -

PTP (
Precision
Time
Protocol)

- IEEE 1588 V1 and V2
- Boundary Clock V1
- Boundary Clock V2
- End-to-End Transparent Clock Sync Two Step Operation
- End-to-End Transparent Clock Sync One Step Operation
- Peer-to-Peer Transparent Clock
- End-to-end Boundary clock
- Peer-to-peer boundary clock
- Microsecond accuracy

File Download

Firmware can be transferred via TFTP, SCP, HTTP, HTTPS, or via insertion of a microSD card. Text-based files that can be created or edited by common text editors.

Secure Copy

Protocol (SCP)

SCP based on the Secure Shell (SSH) protocol, is a means of securely transferring computer files between a local host and a remote host or between two remote hosts.

Spanning
Tree Protocol (STP)

IEEE 802.1D now incorporated in IEEE 802.1Q-2014, STP prevents bridge loops and the broadcast radiation that results from them.

Other Spanning Tree features include BPDU guard, Root guard, loop guard, root guard and TCN Guard

Rapid

Spanning Interoperable with STP, RSTP (IEEE 802.1w) takes advantage of point-to-point wiring and provides rapid convergence of Tree Protocol (RSTP)
the spanning tree. Reconfiguration of the spanning tree can occur in less than 1 second

Multiple

Spanning
Tree Protocol
(MSTP)

Originally defined in IEEE 802.1s and now incorporated IEEE 802.1Q-2014, defines an extension to RSTP for use with VLANs. The Multiple Spanning Tree Protocol configures a separate Spanning Tree for each VLAN group and blocks all but one of the possible alternate paths within each Spanning Tree.
P-Ring Perle's Ring Protocol provides resilient operation of a network made up of managed switches in a ring topology. The
implementation prevents a switch loop scenario and also enables communication within the ring if a failure occurs
somewhere in the ring.

P-Ring also has an auto-configuration feature that automatically determines the master control switch in the ring reducing installation time.

Recovery time of 10 ms or better in rings composed of up to 14 switches

Link Standby

A link recovery feature using a primary and backup link. Provides a simple alternative to spanning tree protocols for link redundancy

VLAN Features

VLAN Range

Up to 255 VLANS across a VLAN ID range of 1 to 4094

GVRP

Generic Attribute Registration Protocol (GARP) VLAN Registration Protocol (GVRP) is an application defined in the IEEE 802.1Q standard that allows for the control of VLANs. With GVRP, the switch can exchange VLAN configuration information with other GVRP switches, prune unnecessary broadcast and unknown unicast traffic, and dynamically create and manage VLANs on switches that are connected through 802.1Q trunk ports.

Voice VLANs

Voice VLANs enables one to separate, prioritize, and authenticate voice traffic moving through your network, and to avoid the possibility of broadcast storms affecting VoIP (Voice-over-IP) operation. With an IP Phone connected to an access port, a switchport voice VLAN enables the use of one VLAN for voice traffic and another VLAN for data traffic from an Ethernet device attached to the phone

VLAN

Interfaces
Perle switches provide the ability to configure management VLAN interfaces. This enables network administrators to access the switch's management interface from separate VLAN networks

Security Features

- Provides secure access to switch ports from a central RADIUS server. The switch operating as an authenticator interacting with an 802.1X compliant supplicant (PC or industrial device) through the use of the EAPOL protocol. Authentication will be granted/denied through an external RADIUS server.
- RADIUS assigned VLAN
- IETF 64 (Tunnel Type)
- IETF 65 (Tunnel Medium Type)
- IETF 81 (Tunnel Private Group ID)
- Guest VLAN and Restricted VLANs are supported
- For non-802.1X devices found in industrial applications, the switch can use the client MAC address for authorization through the use if MAB (MAC Authentication Bypass)
- Switch can also be configured as an 802.1X supplicant (edge switch) with an 802.1x-aware upstream switch

Login Banner and MOTD

A login message banner presented during sign-on can be configured by the network administrator.

A Message Of The Day can also be created for presentation to an authenticated user.

Password Many organizations require stringent management over the strength level of their passwords. When enabled, Perle extends
Strength
Checking

Port Security

- Secure MAC

Addresses
This port security feature provides the ability to restrict input to an interface by limiting and identifying MAC addresses of the stations allowed to access the port (Access or Trunk) and will take specific actions when violations occur.

Management	Restricting access to management functions can be configured by protocol or IP address selection are provided. This enables administrators to allow only specific workstations using particular protocols to be able to access the management functions of the switch

RADIUS

Management
AAA support for RADIUS servers that Authenticate, Authorize and Account management sessions
Access
Authentication

TACACS+

Management
Access
Authentication

Secure
Socket Layer SSL provided for secure browser sessions using HTTPS
(SSL)

Secure Shell (

SSH)
SSH provided for secure SSH session for CLI and SCP file transfer sessions

SNMPV3
Support provided for secure version 3 of SNMP

Quality of Service (QoS) and Class of Service (CoS) Features

Classification

Congestion Avoidance	Weighted Fair Queuing or Strict Queuing
Egress	
Queues and scheduling	- 4 traffic class queues per port
	- ouplo queue mapp
	- DSCP to output queue mapping
Monitoring Features	
Port Mirroring	$\mathrm{N}: 1$ Port Mirroring is a method of monitoring network traffic. With port mirroring enabled, the switch sends a copy of one or more ports to a predefined destination port. Selection of Transmit, Receive frames or both can be made
RMON	RMON statistics provided for statistics, history, alarms and events for network monitoring and trafic analysis
Syslog	Facility for logging systems messages to an external SYSLOG server
Alert Log	Facility for logging systems messages locally

Traceroute

Layer 2 traceroute to identify the path that a frame takes from source to destination

Virtual cable

 testA test that enables the detection of potential copper cabling issues such as pair polarity pair swaps and excessive pair skew as well as any opens, shorts or any impedance mismatch. Will report the distance in the cable to the open or short.

Power Supply

Monitoring
Provides the status of power supplies of the switch

Internal
Temperature Monitoring

Alarm
Processing

The switch can monitor global switch conditions as well as individual ports. These alarms can be configured to send messages to ;

- an internal log file
- external Syslog server
- SNMP trap server
- An external alarm device such as a bell, light or other signaling device via the switch's built-in dry contact alarm relay

Global Status Monitoring Alarms

- Dual power supply alarm

Port Status Monitoring Alarms

- Link Fault Alarm (IE loss of signal)
- Port not forwarding alarm
- Port not operating alarm (failure upon start up tests)
- FCS Bit error rate alarm

Alarm Relay
When enabled, energizes the built-alarm relay triggering an external alarm circuit such as a bell, light or other signaling device according to alarm conditions set

Management and Standards

IEEE	
Standards	IEEE 802.3 for 10Base-T
	IEEE 802.3u for 100Base-T(X) and 100Base-X
	IEEE 802.3ab for 1000Base-T
	EEE 802.3z for 1000BaseX
	IEEE 802.3x for Flow Control
	IEEE 802.1D-2004 for Spanning Tree Protocol
	IEEE 802.1w for Rapid STP
	EEE 802.1s for Multiple Spanning Tree Protocol
	IEEE 802.1Q for VLAN Tagging
	IEEE 802.1p for Class of Service
	IEEE 802.1X for Authentication
	IEEE 802.3ad for Port Trunk with LACP
	IEEE 802.1AB LLDP
	IEEE 1588v1 PTP Precision Time Protocol
	IEEE 1588v2 PTP Precision Time Protocol

SNMP MIB
Objects
RFC 1213-MIB II
RFC 1493-BRIDGE-MIB
RFC 1907-SNMPV2-MIB
RFC 2012-TCP-MIB
RFC 2013-UDP-MIB
RFC 2578-SNMPV2-SMI
RFC 2579-SNMPV-TC
RFC 2819-RMON-MIB
RFC 4502-RMON2-MIB
RFC 2613-SMON-MIB
RFC 2863-IF-MIB
RFC 4363-Q-Bridge-MIB and P-Bridge MIB
RFC 4318-RSTP-MIB
IP-MIB
LLDP-MIB
LLDP-EXT-MED-MIB
IEEE8021-PAE-MIB (802.1x)

Hardware Features \& Technical Specifications: IDS-509G Industrial Managed DIN Rail Switch

Power

Dual Power Input Both inputs draw power simultaneously. If one power source fails, the other live source can, acting as a backup, supply enough power to meet the operational needs of the switch.

12/24/48 VDC Nominal. (9.6 to 60 VDC)

24 VAC Nominal (18 to 30 VAC)

Power Connector	4-Pin Removable Terminal Block.
	Grounding screw on metal chassis
Overload Current Protection	Fused overload current protection

Reverse polarity The positive and negative inputs can be reversed providing safe and simple power connectivity. protection

Access Ports

RJ45	6,7 or 8 shielded RJ45 ports for 10/100/1000Base-T up to 100 meters (328 ft)
	Auto-negotiation
	Auto-MDI/MDIX-crossover for use with either crossover over straight-through cable types
	Ethernet isolation 1500 V

RJ45 Serial	RJ45 DTE
Console port	Optional rolled and straight thru RJ45 cables and DB adapters are available

USB Serial Console MicroUSB Type B female port for serial console management. Used as an alternative port for out of band management port connections

Digital Inputs	Two Digital Inputs are provided that can be used for generation of alarms (SNMP trap, energizing of on-board Alarm
Relay,etc)	

Gigabit Fiber port 1, 2 or 3 1000Base-x fiber port models

Duplex SC or ST connector

- Multimode $50 / 125$ or $62.5 / 125$ micron fiber cable
- Single mode 9/125 micron fiber cable

Simplex (BIDI, single strand) SC connector

- Multimode $50 / 125$ or $62.5 / 125$ micron fiber cable

Fiber Port Specs

Fiber Type	Transmit (dBm)		Receive (dBm)		Power Budget (dB)	Wavelength (nm)	IEEE	Core Size (um)	Modal Bandwidth (MHz* Km)	Maximum Operating Distance
	Min	Max	Min	Max						
MMF (Duplex SC/ST)	-9.5	-4.0	-17.0	-3.0	7.5	850	$\begin{aligned} & \text { 1000Base- } \\ & \text { SX } \end{aligned}$	62.5	160	$\begin{aligned} & 220 \mathrm{~m} \\ & (722 \mathrm{ft}) \end{aligned}$
								62.5	200	$\begin{aligned} & 275 \mathrm{~m} \\ & (902 \mathrm{ft}) \end{aligned}$
								50	400	$\begin{aligned} & 500 \mathrm{~m} \\ & (1,640 \mathrm{ft}) \end{aligned}$
								50	500	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
								50	2000	$\begin{aligned} & 1000 \mathrm{~m} \\ & (3281 \mathrm{ft}) \end{aligned}$
MMF (Duplex SC/ST)	-6.0	0.0	-17.0	0.0	11.0	1310	$\begin{aligned} & \text { 1000Base- } \\ & \text { LX } \end{aligned}$	62.5	160	$\begin{aligned} & 2 \mathrm{~km} \\ & (1.2 \mathrm{mi}) \end{aligned}$
								50	500	$\begin{aligned} & 1 \mathrm{~km} \\ & (3280 \mathrm{ft}) \end{aligned}$
$\begin{aligned} & \text { MMF } \\ & \text { (simplex SC } \\ & \text {) } \end{aligned}$	-10.0	-4.0	-17.0	-3.0	7.0	$1310 / 1550,1550$	$\begin{aligned} & \text { 1000Base- } \\ & \text { BX-U } \\ & \text { 1000Base- } \\ & \text { BX-D } \end{aligned}$	$\begin{aligned} & 62.5 \\ & 50 \end{aligned}$	500	$\begin{aligned} & 500 \mathrm{~m} \\ & (1,640 \mathrm{ft}) \end{aligned}$
SMF (Duplex SC/ST)	-9.5	-3.0	-20.0	-3.0	10.5	1310	$\begin{aligned} & \text { 1000Base- } \\ & \text { LXILH } \end{aligned}$	9	**	10 km (6.2 mi)
SMF (Simplex SC	-9.0	-3.0	-20.0	-3.0	11.0	$\begin{aligned} & 1310 / 1490 \\ & 1490 / 1310 \end{aligned}$	$\begin{aligned} & \text { 1000Base- } \\ & \text { BX-U } \end{aligned}$	9	**	10 km (6.2 mi)


```SMF ( Simplex SC )```	-3.0	2.0	$-23.0$	-3.0	20.0	$\begin{aligned} & 1310 / 1490 \\ & 1490 / 1310 \end{aligned}$	$\begin{aligned} & \text { 1000Base- } \\ & \text { BX-U } \\ & \text { 1000Base- } \\ & \text { BX-D } \end{aligned}$	9	**	$\begin{aligned} & 40 \mathrm{~km} \\ & (24.9 \mathrm{mi}) \end{aligned}$
SMF   ( Duplex   SC/ST )	-2.0	5.0	-23.0	-3.0	21.0	1550	$\begin{aligned} & \text { 1000Base- } \\ & \text { ZX } \end{aligned}$	9	**	$\begin{aligned} & 70 \mathrm{~km} \\ & (43 \mathrm{mi}) \end{aligned}$


```SMF ( Simplex SC )```	-2.0	3.0	-26.0	-3.0	24.0	$\begin{aligned} & 1510 / 1590 \\ & 1590 / 1510 \end{aligned}$	1000Base-BX-U 1000Base-BX-D	9	**	$\begin{aligned} & 80 \mathrm{~km} \\ & (50 \mathrm{mi}) \end{aligned}$
SMF (Duplex SC/ST)	0.0	5.0	-32.0	-9.0	32.0	1550	$\begin{aligned} & \text { 1000Base- } \\ & \text { ZX } \end{aligned}$	9	**	$\begin{aligned} & 120 \mathrm{~km} \\ & (74.6 \mathrm{mi}) \end{aligned}$
```SMF ( Simplex SC )```	-3.0	2.0	-34.0	-9.0	31.0	$\begin{aligned} & 1510 / 1590 \\ & 1590 / 1510 \end{aligned}$	$\begin{aligned} & \text { 1000Base- } \\ & \text { BX-U } \\ & \text { 1000Base- } \\ & \text { BX-D } \end{aligned}$	9	**	$\begin{aligned} & 120 \mathrm{~km} \\ & (74.6 \mathrm{mi}) \end{aligned}$
$\begin{aligned} & \text { SMF } \\ & \text { ( Duplex } \\ & \text { SC/ST ) } \end{aligned}$	2.0	5.0	-34.0	-9.0	36.0	1550	$\begin{aligned} & \text { 1000Base- } \\ & \text { ZX } \end{aligned}$	9	**	$\begin{aligned} & 160 \mathrm{~km} \\ & (100 \mathrm{mi}) \end{aligned}$

[^0]
## Alarms

Alarm Relay

- NC ( Normally Closed ) or NO ( Normally Open ) dry contact.
- 1A @ 24V


## Removable Storage



## Indicators

Power

This LED is turned on when the appropriate level of voltage is applied to one or both of the power inputs
System
Indicates whether the switch O/S is operating normally
RJ45 Ethernet
Fiber Link
Fiber link LED indicates Link and Data Activity
Alarm


11/10/2016	Managed 9 Port Industrial Gigabit Fiber Switch \| Perle IDS-509G
P-Ring Master LED	Status of the P-Ring Master
Backup Network Coupling	Indicates whether or not the "Backup Network Coupling" feature is enabled (Redundant links connecting two P-Ring networks )
	External Configuration DIP Switches
RM	When enabled, designates this switch as the P-Ring Master
BC	Activate Backup Coupling between 2 ring networks
	Environmental Specifications
Operating   Temperature   Ranges	Standard temperature models ( Std ): $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$.   XT Industrial extended temperature models ( Ind ) : $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}\left(-40 \mathrm{~F}\right.$ to $167^{\circ} \mathrm{F}$ )
Storage   Temperature Range	Minimum range of $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-13^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right) .-40 \mathrm{C}$ to $85 \mathrm{C}(-40 \mathrm{~F}$ to 185 F$)$ for industrial extended temperature models
Operating Humidity Range	$5 \%$ to $90 \%$ non-condensing
Storage Humidity Range	$5 \%$ to $95 \%$ non-condensing
Operating Altitude	Up to 3,048 meters (10,000 feet)
Chassis	Metal with an IP20 ingress protection rating


Din Rail Mountable	DIN Rail attachment included. Mounts to standard 35 mm DIN rail in accordance with DIN EN 60175.
	Removable to accommodate optional Panel/Wall mount kit
	Product Weight and Dimensions
Weight	1.5 kg
Dimensions	$75 \times 130 \times 121 \mathrm{~mm}$


Shipping Weight	2.0 kg
Shipping   Dimensions	$170 \times 260 \times 70 \mathrm{~mm}$

## Standards and Certifications

Safety UL 60950-1

IEC 60950-1:2005+A1:2009 and

EN 60950-1:2006+A11:2009+A1:2010+A12:2011

CE Mark

UL 61010-1 and UL 61010-2-201 ( Standard for Safety for Programmable Controllers )
Emissions FCC 47 Part 15 Class A

CISPR 22:2008/EN55022:2010 (Class A)

CISPR 24:2010/EN 55024:2010

EMC and Immunity CISPR 24:2010/EN 55024:2010
IEC/EN 61000-4-2 (ESD)
IEC/EN 61000-4-3 (RS)
IEC/EN 61000-4-4 (EFT)
IEC/EN 61000-4-5 (Surge)
IEC/EN 61000-4-6 (CS)
IEC/EN 61000-4-8 (Magnetic Field)
IEC/EN 61000-6-2 ( General Immunity in Industrial Environments )

Industrial Safety UL 61010-1 and UL 61010-2-201 ( Standard for Safety for Programmable Controllers ). Formerly known as UL508 (Safety standard for Industrial Control Equipment )

## Hazardous

ANSI/ISA 12.12.01, Class 1 Division 2 Groups A-D (formerly known as UL 1604 ) *
Locations ( Hazloc )
ATEX Class 1 Zone 2 *

Environmental Reach, RoHS and WEEE Compliant

Other ECCN: 5A992

5 year Warranty

Contents Shipped

- Industrial Ethernet Switch with DIN Rail attachment
- Terminal block
- Installation guide
* pending

IDS-509G Industrial Managed DIN Rail Switch


Single Mode / Single Strand ( WDM ) Fiber

Connecting devices over a single fiber strand (also referred to as "Bi-Directional" BiDi or Simplex)

To reduce costs, or where there are limits on available fiber, Wavelength-Division Multiplexing (WDM) technology may be utilized. WDM uses separate transmit and receive frequencies to communicate on a single fiber strand. WDM technology relies on the fact that optical fibers can carry many wavelengths of light simultaneously without interaction between each wavelength. Thus, a single fiber can carry many separate wavelength signals or channels simultaneously. WDM systems are divided into different wavelength patterns, conventional/coarse (CWDM) and dense (DWDM).


When Single Strand fiber is used, you will need an "Up" side and a "Down" side when interconnecting fiber devices.

Perle offers a wide variety of Single Fiber ("Up/Down") Ethernet Switches and Media Converters for use with single strand of fiber.

## Select a Model to obtain a Part Number - IDS-509G

Std $=$ Standard Temperature models: $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$.
Ind = Industrial Extended Temperature Models: $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}\left(-40 \mathrm{~F}\right.$ to $\left.167^{\circ} \mathrm{F}\right)$

## Duplex Fiber



Model	Temp	10/100/1000Base-   T RJ45	Fiber Connectors					Power Budget (dB)	Wavelength (nm)	Fiber Type	Operating Distance
				Min	Max	Min	Max				
$\begin{aligned} & \text { IDS- } \\ & \text { 509G- } \\ & \text { CMD05 } \end{aligned}$	Std	8	$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
IDS-   509G-   CMD05-   XT	Ind	8	$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$


IDS-	Std	8	$1 \times$ Duplex	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	
$509 G-$   TMD05			ST								
$(1,804 \mathrm{ft})$											


|  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IDS- | Std | 8 | $1 \times$ Duplex | -6.0 | 0.0 | -17.0 | 0.0 | 11.0 | 1310 | MMF | 2 km |
| 509G- |  |  | SC |  |  |  |  |  |  |  |  |
| CMD2 |  |  |  |  |  |  |  |  |  |  |  |


IDS-	Std	8	$1 \times$ Duplex	-6.0	0.0	-17.0	0.0	11.0	1310	MMF	2 km
509G-			ST							$(1.2 \mathrm{mi})$	
TMD2											


IDS-509GCSD10	Std	8	$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	$-3.0$	-20.0	-3.0	10.5	1310	SMF	10 km ( 6.2 mi )
IDS-	Ind	8	1 x Duplex	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	10 km


IDS-	Std	8
$509 G-$		


$1 \times$ Duplex	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	10 km
ST								$(6.2 \mathrm{mi})$


$\begin{aligned} & \text { IDS- } \\ & \text { 509G- } \\ & \text { TSD10-XT } \end{aligned}$	Ind	8	$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
IDS-509GCSD40	Std	8	$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-2.0	2.0	-23.0	-3.0	21.0	1310	SMF	$\begin{aligned} & 40 \mathrm{~km} \\ & (24.9 \mathrm{mi}) \end{aligned}$
IDS-509GTSD40	Std	8	$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-2.0	2.0	-23.0	-3.0	21.0	1310	SMF	$\begin{aligned} & 40 \mathrm{~km} \\ & (24.9 \mathrm{mi}) \end{aligned}$


IDS-	Std	8	$1 \times$ Duplex	-2.0	5.0	-23.0	-3.0	21.0	1550	SMF	70 km
509G-   CSD70			SC							$(43 \mathrm{mi})$	


IDS-	Std	8	$1 \times$ Duplex	-2.0	5.0	-23.0	-3.0	21.0	1550	SMF	70 km
509G-			ST							$(43 \mathrm{mi})$	
TSD70											


IDS-	
$509 \mathrm{G}-$	Std


$1 \times$ Duplex	0.0	5.0	-32.0	-9.0	32.0	1550	SMF	120 km
SC								$(74.6 \mathrm{mi})$

CSD120

| IDS- <br> 509G- <br> TSD120 | Std | 8 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


IDS-   509G2-   C2MD05-   XT	Ind	7	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
$\begin{aligned} & \text { IDS- } \\ & \text { 509G2- } \\ & \text { T2MD05 } \end{aligned}$	Std	7	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
IDS-   509G2-   T2MD05-   XT	Ind	7	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$


IDS-509G2C2MD2	Std	7	$\begin{aligned} & 2 x \text { Duplex } \\ & \text { SC } \end{aligned}$	-6.0	0.0	-17.0	0.0	11.0	1310	MMF	$\begin{aligned} & 2 \mathrm{~km} \\ & (1.2 \mathrm{mi}) \end{aligned}$
IDS-509G2T2MD2	Std	7	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-6.0	0.0	-17.0	0.0	11.0	1310	MMF	$\begin{aligned} & 2 \mathrm{~km} \\ & (1.2 \mathrm{mi}) \end{aligned}$
IDS-509G2C2SD10	Std	7	$\begin{aligned} & 2 x \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	$-3.0$	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
IDS-509G2-C2SD10XT	Ind	7	$\begin{aligned} & 2 x \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$


IDS-509G2T2SD10	Std	7	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
IDS-   509G2-   T2SD10-   XT	Ind	7	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
IDS-509G3-C2MD05SD10	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$


$1 \times$ Duplex	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	10 km
SC								$(6.2 \mathrm{mi})$


IDS- 509G3-	Ind	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
IDS-   509G3-   T2MD05-   SD10	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
			$1 \text { x Duplex }$ ST	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
IDS-   509G3-   T2MD05-   SD10-XT	Ind	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	$-3.0$	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
IDS-509G3-C2MD05SD40	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-2.0	2.0	-23.0	-3.0	21.0	1310	SMF	$\begin{aligned} & 40 \mathrm{~km} \\ & (24.9 \mathrm{mi}) \end{aligned}$
IDS-   509G3-   T2MD05-   SD40	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-4.0	-17.0	$-3.0$	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-2.0	2.0	-23.0	-3.0	21.0	1310	SMF	$\begin{aligned} & 40 \mathrm{~km} \\ & (24.9 \mathrm{mi}) \end{aligned}$
IDS-509G3-C2MD05SD70	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-4.0	-17.0	$-3.0$	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-2.0	5.0	-23.0	-3.0	21.0	1550	SMF	$\begin{aligned} & 70 \mathrm{~km} \\ & (43 \mathrm{mi}) \end{aligned}$
IDS-   509G3-	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	$\begin{aligned} & 550 \mathrm{~m} \\ & (1,804 \mathrm{ft}) \end{aligned}$

T2MD05-
SD70

$1 \times$ Duplex	-2.0	5.0	-23.0	-3.0	21.0	1550	SMF	70 km   ST
							$(43 \mathrm{mi})$	

IDS- Std 6
509G3-
C2MD05SD120

$1 \times$ Duplex	0.0	5.0	-32.0	-9.0	32.0	1550	SMF	120 km
SC								$(74.6 \mathrm{mi})$


$2 \times$ Duplex	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	550 m
ST								$(1,804 \mathrm{ft})$

509G3-T2MD05SD120

Std 6
IDS- Std 6

```
IDS- Std 6
509G3-
T2SD10-
MD05
```

IDS- Ind
509G3-
T2SD10-
MD05-XT

$1 \times$ Duplex	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	550 m
ST								$(1,804 \mathrm{ft})$

$2 \times$ Duplex $\begin{array}{lllllll}-9.5 & -3.0 & -20.0 & -3.0 & 10.5 & 1310\end{array}$
ST

$1 \times$ Duplex	-9.5	-4.0	-17.0	-3.0	7.5	850	MMF	550 m
ST								$(1,804 \mathrm{ft})$


$2 \times$ Duplex	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	10 km
ST								


$2 \times$ Duplex	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	10 km
SC								$(6.2 \mathrm{mi})$

( 6.2 mi )

SMF $\quad 40$ km ( 24.9 mi )

IDS- 509G3-	Std	6	$2 x \text { Duplex }$ ST	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
			1 x Duplex ST	-2.0	2.0	-23.0	-3.0	21.0	1310	SMF	$\begin{aligned} & 40 \mathrm{~km} \\ & (24.9 \mathrm{mi}) \end{aligned}$
IDS-   509G3-   C2SD10-   SD70	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	$-3.0$	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-2.0	5.0	-23.0	-3.0	21.0	1550	SMF	$\begin{aligned} & 70 \mathrm{~km} \\ & (43 \mathrm{mi}) \end{aligned}$
IDS-   509G3-   T2SD10-   SD70	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	$-2.0$	5.0	-23.0	-3.0	21.0	1550	SMF	$\begin{aligned} & 70 \mathrm{~km} \\ & (43 \mathrm{mi}) \end{aligned}$
IDS-   509G3-   C2SD10-   SD120	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	0.0	5.0	-32.0	-9.0	32.0	1550	SMF	$\begin{aligned} & 120 \mathrm{~km} \\ & (74.6 \mathrm{mi}) \end{aligned}$


IDS-   509G3-   T2SD10-   SD120	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	0.0	5.0	-32.0	-9.0	32.0	1550	SMF	$\begin{aligned} & 120 \mathrm{~km} \\ & (74.6 \mathrm{mi}) \end{aligned}$
IDS-   509G3-   C2SD10-   SD160	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	-9.5	-3.0	-20.0	-3.0	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
			$\begin{aligned} & 1 \times \text { Duplex } \\ & \text { SC } \end{aligned}$	2.0	5.0	-34.0	-9.0	36.0	1550	SMF	$\begin{aligned} & 160 \mathrm{~km} \\ & (100 \mathrm{mi}) \end{aligned}$
IDS-   509G3-   T2SD10-   SD160	Std	6	$\begin{aligned} & 2 \times \text { Duplex } \\ & \text { ST } \end{aligned}$	-9.5	$-3.0$	-20.0	$-3.0$	10.5	1310	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$
			$1 \times \text { Duplex }$ ST	2.0	5.0	-34.0	-9.0	36.0	1550	SMF	$\begin{aligned} & 160 \mathrm{~km} \\ & (100 \mathrm{mi}) \end{aligned}$

Single Fiber (Simplex / BiDi ) Models ( Recommended use in pairs )

Simplex (BiDi ) Fiber

Model	Temp	10/100/1000Base-   T RJ45	Fiber Connector	Transmit (dBm)		Receive (dBm)		Power Budget (dB)	Wavelength (nm)   TX / RX	Fiber   Type	Operating Distance
				Min	Max	Min	Max				
$\begin{aligned} & \text { IDS- } \\ & \text { 509G- } \\ & \text { CMS05U } \end{aligned}$	Std	8	$1 \text { x }$   Simplex SC	-10.0	-4.0	-17.0	-3.0	7.0	1550 / 1310	MMF	$\begin{aligned} & 500 \mathrm{~m} \\ & (1,640 \mathrm{ft}) \end{aligned}$
$\begin{aligned} & \text { IDS- } \\ & \text { 509G- } \\ & \text { CMS05D } \end{aligned}$	Std	8	$1 \mathrm{x}$   Simplex SC	-9.5	-4.0	-17.0	-3.0	7.5	1550 / 1310	MMF	$\begin{aligned} & 500 \mathrm{~m} \\ & (1,640 \mathrm{ft}) \end{aligned}$
$\begin{aligned} & \text { IDS- } \\ & \text { 509G- } \\ & \text { CSS10U } \end{aligned}$	Std	8	$1 \text { x }$   Simplex SC	-9.0	-3.0	-20.0	-3.0	11.0	1310 / 1490	SMF	$\begin{aligned} & 10 \mathrm{~km} \\ & (6.2 \mathrm{mi}) \end{aligned}$


IDS-	Std	8	1 x	-9.0	-3.0	-20.0	-3.0	11.0	$1490 / 1310$	SMF	10 km
509G-			Simplex							$(6.2 \mathrm{mi})$	
CSS10D		SC									


IDS-	Ind	8	1 x	-9.0	-3.0	-20.0	-3.0	11.0	$1310 / 1490$	SMF	10 km
509G-			Simplex							$(6.2 \mathrm{mi})$	
CSS10U-											
XT											


IDS-	Ind	8	$1 \times$	-9.0	-3.0	-20.0	-3.0	11.0	$1490 / 1310$	SMF	10 km
509G-			Simplex							$(6.2 \mathrm{mi})$	
CSS10D-											
XT											


|  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| IDS- | Std | 8 | 1 x | -8.0 | -3.0 | -22.0 | -3.0 | 14.0 | $1310 / 1490$ | SMF | 20 km |
| 509G- |  |  | Simplex |  |  |  |  |  |  | $(12.4 \mathrm{mi})$ |  |
| CSS20U |  |  | SC |  |  |  |  |  |  |  |  |


$\begin{aligned} & \text { IDS- } \\ & \text { 509G- } \\ & \text { CSS20D } \end{aligned}$	Std	8	$\begin{aligned} & 1 \mathrm{x} \\ & \text { Simplex } \\ & \text { SC } \end{aligned}$	-8.0	-3.0	-22.0	-3.0	14.0	1490 / 1310	SMF	$\begin{aligned} & 20 \mathrm{~km} \\ & (12.4 \mathrm{mi}) \end{aligned}$
IDS-   509G-   CSS40U	Std	8	$\begin{aligned} & 1 \mathrm{x} \\ & \text { Simplex } \end{aligned}$ SC	-3.0	2.0	-23.0	-3.0	20.0	1310 / 1490	SMF	$\begin{aligned} & 40 \mathrm{~km} \\ & (24.9 \mathrm{mi}) \end{aligned}$


IDS-	Std	8	$1 \times$	-3.0	2.0	-23.0	-3.0	20.0	$1490 / 1310$	SMF	40 km
509G-			Simplex							$(24.9 \mathrm{mi})$	
CSS40D			SC								


IDS-	Std	8	$1 \times$	-2.0	3.0	-26.0	-3.0	24.0	$1510 / 1590$	SMF	80 km
509G-			Simplex							$(50 \mathrm{mi})$	
CSS80U			SC								


IDS-	Std	8	1 x	-2.0	3.0	-26.0	-3.0	24.0	$1590 / 1510$	SMF	80 km
509G-			Simplex							$(50 \mathrm{mi})$	
CSS80D		SC									


IDS-   509G-   CSS120U	Std	8	$\begin{aligned} & 1 \mathrm{x} \\ & \text { Simplex } \\ & \text { SC } \end{aligned}$	-3.0	2.0	-34.0	-9.0	31.0	1510 / 1590	SMF	$\begin{aligned} & 120 \mathrm{~km} \\ & (74.6 \mathrm{mi}) \end{aligned}$
$\begin{aligned} & \text { IDS- } \\ & \text { 509G- } \\ & \text { CSS120D } \end{aligned}$	Std	8	$\begin{aligned} & 1 \mathrm{x} \\ & \text { Simplex } \\ & \text { SC } \end{aligned}$	-3.0	2.0	-34.0	-9.0	31.0	1590 / 1510	SMF	$\begin{aligned} & 120 \mathrm{~km} \\ & (74.6 \mathrm{mi}) \end{aligned}$

## Industrial Ethernet Switch Accessories

Panel Mount kit Brackets for attaching 30 to 75 mm wide Perle IDS industrial switches inside a control panel or to a wall for wall. PM3

Rack Mount Kit Bracket for mounting Perle DIN Rail switches in a standard 19" rack. Occupies "4U" of vertical rack space. 275 mm ( 10 RM4U inches ) deep

DIN Rail 24V
IDPS-24-40-XT - DIN-Rail 24 VDC, 40 Watt power supply with universal 85 to 264 VAC or $120-370$ VDC input, -20 to $70^{\circ} \mathrm{C}$
Power Supply extended operating temperature. Power Supply Specifications.

DBA0020C RJ-45F to DB-9F crossover (DTE) adapter for Perle serial console ports with Sun/Cisco pinout. \#1100300-10


[^0]:    * 1db/km multimode fiber cable
    ** as per ITU-T G. 652 SMF specifications

